The GPR 55 agonist, L-α-lysophosphatidylinositol, mediates ovarian carcinoma cell-induced angiogenesis

Hofmann, Nicole, Jiang Yang, Sunia Trauger, Hironao Nakayama, Lan Huang, Dirk Strunk, Marsha Moses, Michael Klagsbrun, Joyce Bischoff, and Wolfgang Graier. 2015. “The GPR 55 Agonist, L-α-Lysophosphatidylinositol, Mediates Ovarian Carcinoma Cell-Induced Angiogenesis”. Br J Pharmacol 172 (16): 4107-18.

NOTES

Abstract

BACKGROUND AND PURPOSE: Highly vascularized ovarian carcinoma secretes the putative endocannabinoid and GPR55 agonist, L-α-lysophosphatidylinositol (LPI), into the circulation. We aimed to assess the involvement of this agonist and its receptor in ovarian cancer angiogenesis. EXPERIMENTAL APPROACH: Secretion of LPI by three ovarian cancer cell lines (OVCAR-3, OVCAR-5 and COV-362) was tested by mass spectrometry. Involvement of cancer cell-derived LPI on angiogenesis was tested in the in vivo chicken chorioallantoic membrane (CAM) assay along with the assessment of the effect of LPI on proliferation, network formation, and migration of neonatal and adult human endothelial colony-forming cells (ECFCs). Engagement of GPR55 was verified by using its pharmacological inhibitor CID16020046 and diminution of GPR55 expression by four different target-specific siRNAs. To study underlying signal transduction, Western blot analysis was performed. KEY RESULTS: Ovarian carcinoma cell-derived LPI stimulated angiogenesis in the CAM assay. Applied LPI stimulated proliferation, network formation, and migration of neonatal ECFCs in vitro and angiogenesis in the in vivo CAM. The pharmacological GPR55 inhibitor CID16020046 inhibited LPI-stimulated ECFC proliferation, network formation and migration in vitro as well as ovarian carcinoma cell- and LPI-induced angiogenesis in vivo. Four target-specific siRNAs against GPR55 prevented these effects of LPI on angiogenesis. These pro-angiogenic effects of LPI were transduced by GPR55-dependent phosphorylation of ERK1/2 and p38 kinase. CONCLUSIONS AND IMPLICATIONS: We conclude that inhibiting the pro-angiogenic LPI/GPR55 pathway appears a promising target against angiogenesis in ovarian carcinoma.
Last updated on 02/25/2023