Human vasculogenic cells form functional blood vessels and mitigate adverse remodeling after ischemia reperfusion injury in rats

Kang, Kyu-Tae, Matthew Coggins, Chunyang Xiao, Anthony Rosenzweig, and Joyce Bischoff. 2013. “Human Vasculogenic Cells Form Functional Blood Vessels and Mitigate Adverse Remodeling After Ischemia Reperfusion Injury in Rats”. Angiogenesis 16 (4): 773-84.

NOTES

Abstract

Cell-based therapies to restore heart function after infarction have been tested in pre-clinical models and clinical trials with mixed results, and will likely require both contractile cells and a vascular network to support them. We and others have shown that human endothelial colony forming cells (ECFC) combined with mesenchymal progenitor cells (MPC) can be used to "bio-engineer" functional human blood vessels. Here we investigated whether ECFC + MPC form functional vessels in ischemic myocardium and whether this affects cardiac function or remodeling. Myocardial ischemia/reperfusion injury (IRI) was induced in 12-week-old immunodeficient rats by ligation of the left anterior descending coronary artery. After 40 min, myocardium was reperfused and ECFC + MPC (2 × 10(6) cells, 2:3 ratio) or PBS was injected. Luciferase assays after injection of luciferase-labeled ECFC + MPC showed that 1,500 ECFC were present at day 14. Human ECFC-lined perfused vessels were directly visualized by femoral vein injection of a fluorescently-tagged human-specific lectin in hearts injected with ECFC + MPC but not PBS alone. While infarct size at day 1 was no different, LV dimensions and heart weight to tibia length ratios were lower in cell-treated hearts compared with PBS at 4 months, suggesting post-infarction remodeling was ameliorated by local cell injection. Fractional shortening, LV wall motion score, and fibrotic area were not different between groups at 4 months. However, pressure-volume loops demonstrated improved cardiac function and reduced volumes in cell-treated animals. These data suggest that myocardial delivery of ECFC + MPC at reperfusion may provide a therapeutic strategy to mitigate LV remodeling and cardiac dysfunction after IRI.
Last updated on 02/25/2023