Publications by Year: 2021

2021

Alvandi, Zahra, and Joyce Bischoff. 2021. “Endothelial-Mesenchymal Transition in Cardiovascular Disease”. Arterioscler Thromb Vasc Biol 41 (9): 2357-69. https://doi.org/10.1161/ATVBAHA.121.313788.
Endothelial-to-mesenchymal transition is a dynamic process in which endothelial cells suppress constituent endothelial properties and take on mesenchymal cell behaviors. To begin the process, endothelial cells loosen their cell-cell junctions, degrade the basement membrane, and migrate out into the perivascular surroundings. These initial endothelial behaviors reflect a transient modulation of cellular phenotype, that is, a phenotypic modulation, that is sometimes referred to as partial endothelial-to-mesenchymal transition. Loosening of endothelial junctions and migration are also seen in inflammatory and angiogenic settings such that endothelial cells initiating endothelial-to-mesenchymal transition have overlapping behaviors and gene expression with endothelial cells responding to inflammatory signals or sprouting to form new blood vessels. Reduced endothelial junctions increase permeability, which facilitates leukocyte trafficking, whereas endothelial migration precedes angiogenic sprouting and neovascularization; both endothelial barriers and quiescence are restored as inflammatory and angiogenic stimuli subside. Complete endothelial-to-mesenchymal transition proceeds beyond phenotypic modulation such that mesenchymal characteristics become prominent and endothelial functions diminish. In proadaptive, regenerative settings the new mesenchymal cells produce extracellular matrix and contribute to tissue integrity whereas in maladaptive, pathologic settings the new mesenchymal cells become fibrotic, overproducing matrix to cause tissue stiffness, which eventually impacts function. Here we will review what is known about how TGF (transforming growth factor) β influences this continuum from junctional loosening to cellular migration and its relevance to cardiovascular diseases.
Hu, Wenquan, Zhong Liu, Valerie Salato, Paula North, Joyce Bischoff, Suresh Kumar, Zhi Fang, Sujith Rajan, Mahmood Hussain, and Qing Miao. 2021. “NOGOB receptor-mediated RAS signaling pathway is a target for suppressing proliferating hemangioma”. JCI Insight 6 (3). https://doi.org/10.1172/jci.insight.142299.
Infantile hemangioma is a vascular tumor characterized by the rapid growth of disorganized blood vessels followed by slow spontaneous involution. The underlying molecular mechanisms that regulate hemangioma proliferation and involution still are not well elucidated. Our previous studies reported that NOGOB receptor (NGBR), a transmembrane protein, is required for the translocation of prenylated RAS from the cytosol to the plasma membrane and promotes RAS activation. Here, we show that NGBR was highly expressed in the proliferating phase of infantile hemangioma, but its expression decreased in the involuting phase, suggesting that NGBR may have been involved in regulating the growth of proliferating hemangioma. Moreover, we demonstrate that NGBR knockdown in hemangioma stem cells (HemSCs) attenuated growth factor-stimulated RAS activation and diminished the migration and proliferation of HemSCs, which is consistent with the effects of RAS knockdown in HemSCs. In vivo differentiation assay further shows that NGBR knockdown inhibited blood vessel formation and adipocyte differentiation of HemSCs in immunodeficient mice. Our data suggest that NGBR served as a RAS modulator in controlling the growth and differentiation of HemSCs.
Lupieri, Adrien, Yasufumi Nagata, Livia Passos, Dakota Beker-Greene, Katherine Kirkwood, Jill Wylie-Sears, Zahra Alvandi, et al. (2021) 2021. “Integration of Functional Imaging, Cytometry, and Unbiased Proteomics Reveals New Features of Endothelial-to-Mesenchymal Transition in Ischemic Mitral Valve Regurgitation in Human Patients”. Front Cardiovasc Med 8: 688396. https://doi.org/10.3389/fcvm.2021.688396.
Background: Following myocardial infarction, mitral regurgitation (MR) is a common complication. Previous animal studies demonstrated the association of endothelial-to-mesenchymal transition (EndMT) with mitral valve (MV) remodeling. Nevertheless, little is known about how MV tissue responds to ischemic heart changes in humans. Methods: MVs were obtained by the Cardiothoracic Surgical Trials Network from 17 patients with ischemic mitral regurgitation (IMR). Echo-doppler imaging assessed MV function at time of resection. Cryosections of MVs were analyzed using a multi-faceted histology and immunofluorescence examination of cell populations. MVs were further analyzed using unbiased label-free proteomics. Echo-Doppler imaging, histo-cytometry measures and proteomic analysis were then integrated. Results: MVs from patients with greater MR exhibited proteomic changes associated with proteolysis-, inflammatory- and oxidative stress-related processes compared to MVs with less MR. Cryosections of MVs from patients with IMR displayed activated valvular interstitial cells (aVICs) and double positive CD31+ αSMA+ cells, a hallmark of EndMT. Univariable and multivariable association with echocardiography measures revealed a positive correlation of MR severity with both cellular and geometric changes (e.g., aVICs, EndMT, leaflet thickness, leaflet tenting). Finally, proteomic changes associated with EndMT showed gene-ontology enrichment in vesicle-, inflammatory- and oxidative stress-related processes. This discovery approach indicated new candidate proteins associated with EndMT regulation in IMR. Conclusion: We describe an atypical cellular composition and distinctive proteome of human MVs from patients with IMR, which highlighted new candidate proteins implicated in EndMT-related processes, associated with maladaptive MV fibrotic remodeling.
Huang, Lan, Colette Bichsel, Alexis Norris, Jeremy Thorpe, Jonathan Pevsner, Sanda Alexandrescu, Anna Pinto, et al. 2021. “Endothelialp.R183Q Increases ANGPT2 (Angiopoietin-2) and Drives Formation of Enlarged Blood Vessels”. Arterioscler Thromb Vasc Biol, ATVBAHA121316651. https://doi.org/10.1161/ATVBAHA.121.316651.
OBJECTIVE: Capillary malformation (CM) occurs sporadically and is associated with Sturge-Weber syndrome. The somatic mosaic mutation in GNAQ (c.548G>A, p.R183Q) is enriched in endothelial cells (ECs) in skin CM and Sturge-Weber syndrome brain CM. Our goal was to investigate how the mutant Gαq (G-protein αq subunit) alters EC signaling and disrupts capillary morphogenesis. Approach and Results: We used lentiviral constructs to express p.R183Q or wild-type GNAQ in normal human endothelial colony forming cells (EC-R183Q and EC-WT, respectively). EC-R183Q constitutively activated PLC (phospholipase C) β3, a downstream effector of Gαq. Activated PLCβ3 was also detected in human CM tissue sections. Bulk RNA sequencing analyses of mutant versus wild-type EC indicated constitutive activation of PKC (protein kinase C), NF-κB (nuclear factor kappa B) and calcineurin signaling in EC-R183Q. Increased expression of downstream targets in these pathways, ANGPT2 (angiopoietin-2) and DSCR (Down syndrome critical region protein) 1.4 were confirmed by qPCR and immunostaining of human CM tissue sections. The Gαq inhibitor YM-254890 as well as siRNA targeted to PLCβ3 reduced mRNA expression levels of these targets in EC-R183Q while the pan-PKC inhibitor AEB071 reduced ANGPT2 but not DSCR1.4. EC-R183Q formed enlarged blood vessels in mice, reminiscent of those found in human CM. shRNA knockdown of ANGPT2 in EC-R183Q normalized the enlarged vessels to sizes comparable those formed by EC-WT. CONCLUSIONS: Gαq-R183Q, when expressed in ECs, establishes constitutively active PLCβ3 signaling that leads to increased ANGPT2 and a proangiogenic, proinflammatory phenotype. EC-R183Q are sufficient to form enlarged CM-like vessels in mice, and suppression of ANGPT2 prevents the enlargement. Our study provides the first evidence that endothelial Gαq-R183Q is causative for CM and identifies ANGPT2 as a contributor to CM vascular phenotype.
Seebauer, Caroline, Matthew Graus, Lan Huang, Alex McCann, Jill Wylie-Sears, Frank Fontaine, Tara Karnezis, et al. 2021. “Non-β-blocker enantiomers of propranolol and atenolol inhibit vasculogenesis in infantile hemangioma”. J Clin Invest. https://doi.org/10.1172/JCI151109.
Propranolol and atenolol, current therapies for problematic infantile hemangioma (IH), are composed of R(+) and S(-) enantiomers: the R(+) enantiomer is largely devoid of β-blocker activity. We investigated the effect of R(+) enantiomers of propranolol and atenolol on the formation of IH-like blood vessels from hemangioma stem cells (HemSC) in a murine xenograft model. Both R(+) enantiomers inhibited HemSC vessel formation in vivo. In vitro, similar to R(+) propranolol, both atenolol and its R(+) enantiomer inhibited HemSC to endothelial differentiation. As our previous work implicated the transcription factor SRY(Sex Determining Region Y)-Box Transcription Factor-18 (SOX18) in propranolol-mediated inhibition of HemSC to endothelial differentiation, we tested in parallel a known SOX18 small molecule inhibitor (Sm4) and show that this compound inhibited HemSC vessel formation in vivo with a similar efficacy as the R(+) enantiomers. We next examined how R(+) propranolol alters SOX18 transcriptional activity. Using a suite of biochemical, biophysical and quantitative molecular imaging assays we show that R(+) propranolol directly interferes with SOX18 target gene trans-activation, disrupts SOX18-chromatin binding dynamics and reduced SOX18 dimer formation. We suggest the R(+) enantiomers of widely used β-blockers could be repurposed to increase efficiency of current IH treatment and lower adverse associated side effects.